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Excessive nitrogen (N) input into the environment is a major contributor to the
global contamination of drinking water sources and the eutrophication of aquatic
ecosystems. This study investigated the impact of land use on nitrate loading in
the Dunk River Watershed in Prince Edward Island, Canada, using the Soil and
Water Assessment Tool (SWAT) by focusing on the role of red clover in potato
rotation systems. Nitrogen uptake and accumulation of the main crops were
refined using local measurements. The SWATmodel estimated an annual average
nitrate loading of 316 Mg N (or 22 kg N/ha) in the watershed. Although the
potato–cereal–red clover (PBC) rotation land only accounted for 56% of the
watershed, it contributed 90% of total nitrate loading, emphasizing the need to
improve N-use efficiency. Annual nitrate loading varied with a coefficient of
24.8% but showed no significant long-term trend. Fluctuations were correlated
with stream discharge and potato production area, as higher levels of both
increased nitrate loading. Groundwater delivered approximately 98% of total
nitrate loading. Red clover was estimated to accumulate 201 kg N/ha annually,
comparable to the total N demand of potatoes in the region, contributing
significant N to the crop rotation system. Substituting soybean for red clover
in the PBC rotation resulted in a significant 16.7% reduction in nitrate loading. This
reduction was driven by decreases in nitrate loading in potato (169.7–141.4 MgN/
yr.), cereal (77.3–70.5 Mg N/yr.), and red clover lands (36.8–0 Mg N/yr.), despite
an increase in soybean land (5.9–26.5 Mg N/yr.). These findings highlight the
importance of adequately accounting for N credits from red clover or substituting
it with a crop that recycles less N, such as soybean, to enhance the sustainability
of potato production. These findings also underscore the importance of properly
modeling leguminous forages on nitrate loading estimations.
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1 Introduction

Nitrogen (N) is an important nutrient for crop growth and is utilized extensively
worldwide to meet increasing food demand driven by population growth. However,
excessive application and inefficient use of N fertilizer and/or leguminous green manure
for crop production can result in significant nitrate leaching, leading to groundwater
contamination (Meisinger and Delgado, 2002; Jiang et al., 2011). The discharge of nitrate-
laden groundwater into receiving surface waters contributes to eutrophication worldwide
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(Hua et al., 2018; Vörösmarty et al., 2010; De Notaris et al., 2018;
Peralta and Stockle, 2002; Prunty and Greenland, 1997; Torstensson
et al., 2006; Zebarth et al., 2009). For example, the estuaries of Prince
Edward Island (PEI), Canada, part of the Gulf of St. Lawrence, have
experienced eutrophication due to excessive nitrate loading, with
several dozen anoxic events documented from 2016 to 2021 by the
PEI Government (PEI government). Continuous freshwater quality
monitoring in PEI has revealed a noticeable upward trend in nitrate
levels (Jiang et al., 2015). This correlates with significant
transformations in agricultural land use during the early to mid-
1990s, with potato farmland expanding from 11,982 ha in 1951 to
43,770 ha in 1996 (Bugden et al., 2014; Grizard et al., 2020).
Intensive potato production has been linked to elevated nitrate
loadings in groundwater and down-gradient estuaries on the
island (Benson et al., 2006; Savard et al., 2007; Zebarth et al.,
2015; Jiang et al., 2015).

Forage legumes, such as red clover and alfalfa, are commonly
planted as rotation crops to improve soil organic matter, break pest
cycles, control weeds, and provide N for subsequent cash crops (Vos
et al., 2012; Myrbeck, 2014; Jahanzad et al., 2017; Kelling et al., 2019).
However, failing to account for their N contributions can increase
the risk of nitrate leaching (Neeteson, 1989;Wyngaarden et al., 2015;
Koropeckyj-Cox et al., 2021). In PEI, potatoes are typically grown in
rotation with cereals underseeded with red clover, which is plowed
down in the fall of the third year (Jiang et al., 2015). Depending on
biomass growth, red clover can fix substantial N, ranging from
121 to 266 kg N/ha (Jiang et al., 2019; 2022). This N supply can fully
meet potato N demands (Jiang et al., 2019; Liang et al., 2019).
Fertilizing potatoes without properly considering this N source led
to overfertilization, increasing nitrate leaching risks while reducing
tuber yields (Jiang et al., 2022; Whittaker et al., 2023). Similarly,
Yang et al. (2024) found that red clover accumulated up to 240 kg N/
ha, supplying sufficient N to subsequent corn crops, which achieved
yields comparable to fertilized corn in Ontario, Canada.

Although field experiments have consistently demonstrated that
the substantial N contribution of red clover in crop production
systems was an important source of nitrate leaching to groundwater,
few studies have explored the contribution of red clover on nitrate
loading to down-gradient water courses worldwide. Water quality in
down-gradient water bodies is the product of a large spatial and
temporal scale integration of land use in the watershed and the
associated physical, chemical, and biological interactions occurring
therein (Jorgensen, 2002; Bowen et al., 2007). As a result, reducing N
loadings requires integrated land use management. The nitrate
loading derived from one red clover crop field may not be able
to create a serious off-site water quality problem. Still, the
accumulated contribution of nitrate loadings from multiple red
clover fields could be substantial and problematic. Understanding
the integrated effect of red clover fields on nitrate loading across a
broader agricultural landscape is important for developing effective
watershed management strategies. However, conducting full-scale
experiments to quantify red clover’s influence on nitrate loading
across watersheds is impractical due to the challenges of large-scale
land management and potential long time lags between land use
adjustments and water quality improvements (Jiang and Somers,
2009; Bouraoui and Grizzetti, 2014). The semi-distributed Soil and
Water Assessment Tool (SWAT) simulates hydrological and water
quality variables and crop growth at a watershed scale (Arnold and

Fohrer, 2005; Arnold et al., 1998; Gassman et al., 2007), and can be
used to evaluate the effects of land use on nitrate and other pollutant
loadings (Akhavan et al., 2010; Cerro et al., 2014; Haas et al., 2017;
Lee et al., 2017; Liang et al., 2020). SWAT requires intensive land
use, crop growth, weather, field management, and topography data
inputs. The uncertainties associated with model parameters and
input data with SWAT can be translated into the predictions,
compromising the quality of modeling results (Das et al., 2024;
Tang et al., 2021). Using field measurements to constrain model
parameters can reduce uncertainties (Salam et al., 2024). The
objectives of this study were to: 1) develop a SWAT model in a
representative agricultural watershed in PEI and 2) assess nitrate
loadings in the watershed by focusing on the role of red clover in
potato rotation systems.

2 Methods

2.1 Study site

The study was conducted in the Dunk River Watershed in PEI
(Figure 1). The watershed has a total drainage area of 214 km2.
However, this research focused on the area above the tidal point in
the watershed, which covers an area of 143 km2. The area below the
tidal point was excluded because there was no relevant stream flow
or water quality data below this point. The topography is
characterized by rolling hills, with slopes ranging from 2% to
10%, reaching a maximum elevation of 138 m above mean sea
level in the eastern region. Geologically similar to other parts of the
island, the watershed is entirely underlain by a sandstone formation
consisting of a sequence of Permo-Carboniferous terrestrial red beds
with a thickness of 1,200–1,600m (van de Poll, 1989). The bedrock is
covered by a layer of sandy glacial deposits ranging from 1 to 10m in
thickness. The uppermost portion (~150 m) of the formations
constitutes an unconfined fractured aquifer, which serves as the
primary source of drinking water for residents and contributes to
over 60% of the annual stream flow (Jiang and Somers, 2009). The
water table exhibits relatively rapid responses to precipitation and
snowmelt events, with observations indicating a 5-day lag between
an increase in groundwater level and precipitation events under
similar geological conditions (Liao et al., 2005; Paradis et al., 2006).
The climate of the region is characterized as humid, with cool to
moderate temperatures. Precipitation varies from 810 mm in
2006 to 1,463 mm in 2002. The 20-year climate average
(2002–2020) stands at 1,265 mm, with an average annual
snowfall of 300 mm.

The Alberry and Charlottetown (Orthic Humo-Ferric Podzol)
series soils dominate the watershed, comprising 72% and 14% of its
area, respectively. The Charlottetown soil series is moderately well-
drained with a moderately coarse texture, while the Alberry soil
series is well-drained with a coarse texture. These soils originated
from local glacial till deposits. More detailed information on soil
types is available at http://sis.agr.gc.ca/cansis/soils/pe/soils.html.
The watershed exemplifies a typical intensively farmed watershed
in PEI, with agricultural land covering the majority of the total
land area. The majority of the agricultural land is dedicated to
potato cultivation, often rotated with cereals and forages (Jiang
et al., 2015).
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The watershed is designated as one of four index basins in PEI
due to its importance for environmental monitoring. Consequently,
both Environment and Climate Change Canada (ECCC) and the
Province share responsibility for monitoring activities in the area.
ECCC has continuously monitored stream water levels and
associated discharge since the 1960s. The gauging station, located
approximately 3 km above the tidal point (Figure 1), covers a
drainage area of about 112 km2 upstream. Since the 1980s, the
Province has been monitoring stream water quality, typically
collecting 6–9 samples annually at the gauging station for water
quality analysis, with 5–9 samples taken during the growing season
(GS = May–Oct.) and 0–2 samples during the non-growing season
(NGS = Nov.–Apr.). Agriculture and Agri-Food Canada (AAFC)
has conducted crop cover inventories in PEI since 2011, providing
valuable land use data for the watershed (Agriculture and Agri-Food
Canada, 2010). With access to stream flow, water quality, and land
use data since 2011, SWATmodeling was set to span the period from
2011 to 2020. Throughout the study period, a total of 75 water
quality samples were collected, with 65 samples obtained during the
GS and 12 during the NGS. The minimum daily nitrate
concentration and loading were recorded at 2.4 mg N/L and
214 kg N/day, respectively, reaching a peak of 5.9 mg N/L and
1,310 kg N/day during the GS. During the NGS, the minimum
nitrate concentration and loading were 3.1 mg N/L and 288 kg N/
day, respectively, while the maximum nitrate concentration and

loading were 5 mg N/L and 2043 kg N/day. The watershed has
documented surface and groundwater nitrate enrichment issues
(Bugden et al., 2014; Jiang et al., 2015; Grizard et al., 2020).
Nitrate loading estimated using an integrated model was
23 kg N/ha in the watershed (Jiang et al., 2015), and a 30%
reduction in nitrate loading is required to meet the estuarine N
target set by the Province (Bugden et al., 2014).

2.2 SWAT modeling

2.2.1 SWAT model setup
The SWAT model requires various inputs, including weather,

soil, land use, crop information, agricultural practices, and
topography. For weather data, the weather records from the New
Glasgow station (46.41°, 63.35°), located 13 km northeast of the
watershed, were used. Soil data were obtained from the National Soil
Database of Canada (NSDB), and annual land use data were
obtained from the AAFC’s 2011–2020 Annual Crop Inventory
maps (Agriculture and Agri-Food Canada, 2010). Single-year
land use datasets have been widely employed in SWAT modeling
(El-Khoury et al., 2015; Sith et al., 2019; Yang et al., 2016). The
reliability of model predictions is influenced by how well the model’s
land usage aligns with temporal changes in land use (Pai and
Saraswat, 2011). Previous studies have shown that single-year

FIGURE 1
Location of the Dunk River Watershed.
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land use datasets, though widely used, compromised modeling
accuracy while incorporating dynamic land use data improved
predictions (Wang et al., 2018; Qi et al., 2015). The SWAT
model spanned the 2011–2020 period. Because the dominance of
agricultural and forested terrain, and nitrate loading from onsite
septic systems was estimated to be as low as 2.4% of total nitrate
loading in a previous study (Jiang et al., 2015), the impact of septic
systems on nitrate loading was not explicitly simulated. Tile drains
were not commonly adopted in PEI due to the well-drained sandy
soils, and thus, were not simulated either.

The model divides a watershed into subbasins, which were then
subdivided into hydrologic response units (HRUs) with
homogeneous land use, soil, and slope characteristics (Ullrich
and Volk, 2009). Hydrological and chemical parameters at the
subbasin level are obtained by aggregating or calculating area-
averaged values of the HRUs, serving as the primary calculation
unit in SWAT. The main channel and watershed outputs are
determined by implementing channel processes on the inputs to
the channels. The fractured bedrock aquifer was conceptualized as a
shallow unconfined layer and a deep confined layer and
parameterized using the data in Jiang and Somers (2009). Model
setup was performed using the ArcSWAT 2012 interface in ArcGIS
10.5.1. The watershed was divided into 29 subbasins by SWAT and
further separated into 707 HRUs based on the homogeneity of land
use, soil, and slope classes, using thresholds of 5%, 10%, and 15%,
respectively.

2.2.2 Estimation of red clover coverage and crop N
uptake parameters

In PEI red clover is commonly planted in rotation with potatoes
as a green manure crop (Prince Edward Island Agricultural
Insurance Corporation, 2022; Jiang et al., 2024). Red clover can
accumulate a substantial amount of N through biological fixation
and uptake (Liang et al., 2019; Jiang et al., 2022). Because red clover
was widely planted as a rotation crop, accurately modeling N
fixation, uptake, and transformation of red clover can have
significant implications for overall N cycling within the
watershed. While the annual crop inventory of land use has
records of the most important crops, it did not explicitly map
out the red clover crop coverage. Red clover is grouped along
with other forages and pastures under the broad category of
‘pasture’. Directly importing this land use data into SWAT
precludes assessing the contribution of red clover to nitrate
loading and misrepresents N cycling in the watershed. To
address this issue, the temporal cropping sequence of the local
industry standard potato–cereal–forage rotation was used to
separate the red clover that was planted in rotation with potato
from the broad pasture category. Red clover, when followed by
potato, was reclassified as “red clover planted in rotation with
potato”. In some cases, the forages in the potato rotation were a
mix of perennial grasses like timothies or ryes in addition to red
clover. These forages were treated as “red clover” in SWATmodeling
for simplification.

As the default plant N uptake parameters in SWAT may
generate unrealistic plant N accumulations in the main crops
(i.e., potato, barley, and red clover), measurements of crop
biomass and N accumulation made in a field experiment
conducted in the AAFC Harrington Research Farms (46.341°N

and 63.3°W) from 2014 to 2017 were used to redefine the model
parameters that control plant biomass and N uptake during model
calibration. The experiment included the local industry standard
potato–barley–red clover rotation (referred to as PBC rotation) and
alternative potato–soybean–barley rotation (referred to as PSB
rotation) as the main factor and four commonly planted potato
cultivars (i.e., Russet Burbank, Shepody, Kennebec, and Gold Rush)
in PEI as the second factor. The experiment details and results can be
found in Liang et al. (2019) and Azimi et al. (2022). The parameters
controlling plant biomass and N uptake including radiation-use
efficiency or biomass-energy ratio (BIO_E), normal fraction of N in
yield (CNYLD), normal fraction of N in plant biomass at emergence,
50% maturity, and maturity (PLTNFR_1, PLTNFR_2, PLTNFR_3)
were adjusted to allow the crop N accumulation and biomass match
the field measurements.

2.2.3 Model calibration and validation
Daily stream discharge and nitrate loadings were calibrated with

the measured data using the SUFI-2 algorithm within the SWAT
Calibration and Uncertainty Procedure (SWAT-CUP 2019;
Abbaspour, 2015). The model was stabilized using a 3-year
warm-up period (2008–2010), followed by calibration from
2011 to 2017, and subsequent validation from 2017 to 2020. To
prioritize sensitive parameters, a Global Sensitivity Analysis
approach was employed to analyze streamflow and N data
(Abbaspour et al., 2004). The Global Sensitivity Analysis
technique was utilized to assess the impact of individual
parameter changes on the objective function (Nash-Sutcliffe
efficiency) while keeping other parameters constant (Equation 1).

g � α +∑
m

i�1
βi × bi( ) (1)

This method involves the use of regression coefficients (α and
βi), a calibration parameter (bi), and the number of parameters
considered (m). The advantage of this method is its speed and
relative sensitivity evaluation, as opposed to absolute sensitivity. The
two statistical measures were used in SWAT-CUP to assess
sensitivity are the t-stat index, which indicates the extent of
parameter sensitivity (larger absolute values signify greater
sensitivity), and the p-value, which determines the most sensitive
parameters with p < 0.05 (Abbaspour et al., 2004; Brighenti
et al., 2019).

The Nash-Sutcliffe efficiency (NS), percent bias (PBIAS), and
coefficient of determination R2 were employed to assess the
goodness-of-fit of the SWAT model prediction for streamflow and
nitrate N loading (Moriasi et al., 2007). The numeric scale of NS spans
from -∞ to 1, with 1 signifying a perfect correspondence between
simulation and observation. The PBIAS measures the average tendency
of the model-predicted data to be higher or lower than their measured
values. A low-magnitude PBIAS suggests superior simulation, with zero
being the optimal value. Positive PBIAS values suggest model
underestimation, while negative values imply model overestimation
(Gupta et al., 1999). R2 is a statistical measure representing the
proportion of the variance in the dependent variable that is
predictable from the independent variables. It is a value between
0 and 1, with a value of 1 indicating a perfect fit between the
observed and predicted values (Neter et al., 1996).
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R2 and NS (Nash-Sutcliffe) stand out as two frequently
employed statistical metrics for assessing the performance of
hydrological models in simulating streamflow. However, these
metrics are sensitive to extreme values, particularly peak flows
resulting from runoff events, which could lead to an inaccurate
assessment of model performance during low-flow periods (Krause
et al., 2005; Pushpalatha et al., 2012). Consequently, their application
in calibration may be biased towards high-flow periods, whereas this
study primarily focuses on low-flow periods. A common method to
alleviate the impact of runoff events on model calibration is the
logarithmic transformation of streamflow values. Gupta et al. (1998)
suggested that logarithmic transformation accentuates low flows and
attenuates high flows, thereby enhancing sensitivity to changes in
low-flow conditions. Therefore, log-transformed streamflow was
employed in the calibration process.

2.2.4 Nitrate loading calculations
The validated SWAT model was employed to calculate the

average annual nitrate loading rates for various land uses from
2011 to 2020. These loading rates were further partitioned into
components representing surface water (SW), lateral flow (LF), and
groundwater (GW) pathways within both the GS and NGS.
Additionally, the model was utilized to compute the seasonal and
yearly total nitrate loadings for each land use type over the same
period (2011–2020). These comprehensive data sets were then used
to characterize and assess the impact of different land uses on nitrate
loading in the watershed.

Local field studies indicated that the majority of N from plowed-
down red clover is released during the subsequent potato season,
increasing the risk of excessive nitrate leaching and reduced potato
tuber yield (Jiang et al., 2019; Azimi et al., 2022; Jiang et al., 2022).
However, it remains uncertain whether the SWAT can accurately
model this cross-year effect of red clover N cycling and the subsurface
fate and transport of nitrate from the soil to the Dunk River. To
address this question, the validated SWAT model was employed to
forecast changes in nitrate loading when soybean replaced red clover
in the PBC rotation. As soybean recycles significantly less N into the
soil compared to red clover, this substitution effectively represents a
reduction in red clover-derived N input. If the simulation
demonstrates decreased nitrate loading during the potato and
cereal phases, it would suggest that SWAT can capture the cross-
year effect and subsurface processes; if not, it may indicate limitations
in the model’s capabilities. Furthermore, Liang et al. (2019) found that
substituting soybean for red clover in potato rotations enhancedN use
efficiency by up to 1.6 times and increased potato tuber yield by 13.4%.
This finding suggests that soybean is a more environmentally and
economically sustainable rotation crop. The simulation will illustrate
the potential for nitrate loading reduction by adopting soybean as a
rotation crop in the watershed, offering valuable insights into nitrate
mitigation management strategies.

3 Results and discussion

3.1 Land use

From 2011 to 2020, agricultural land covered an average of
116 km2 annually, representing 81.5% of the watershed area, with

minor yearly variations (Figure 2). Each year, potato land occupied
16.7%–34.3% (average = 25.3%) of the watershed area. Potatoes were
typically cultivated in a 3-year rotation with cereals and red clover.
Cereals were mainly planted in rotation with potatoes, constituting
18.3% of the watershed area annually. The most common cereal was
barley, with lesser amounts of rye and winter wheat. On average,
13.3% of the watershed was planted with red clover in rotation with
potatoes each year. Red clover coverage peaked at 22.2% in 2014 and
declined to a minimum of 16.6% in 2013. Due to the reclassification
algorithm, which separated red clover from the perennial land use
(pasture) category, the average proportion of “pasture” decreased
from 35.3% to 22%. The annual average of potato rotation
production land, which is approximately the total of potato,
cereal, and red clover lands accounted for 57% of the area in the
watershed. Potato rotation land area stayed relatively stable over
time but the areas of potato, cereal, and red clover varied to some
extent from year to year. Corn and soybeans were also planted in the
watershed but occupied very small areas (Figure 2). General
agricultural land refers to land where the annual crop cover
inventory could not identify the agricultural products and
covered relatively small areas (i.e., 0.1%). Buckwheat and brown
mustard were planted in rotation with potatoes in the watershed to
control the wireworm population (Jiang et al., 2022), but they were
not identified in the crop inventory. These crops were likely grouped
into other crop cover classes as they could not be accurately
identified from satellite images. However, these crops typically
require low N input, so the misclassifications are expected to
have a minimal impact on overall nitrate loading estimations.

3.2 Model performance

3.2.1 Plant N accumulations
Using the default plant N uptake parameters (Table 1), the

estimated plant N accumulations were 221 kg N/ha for potato,
110 kg N/ha for cereal (mainly barley), 829 kg N/ha for red clover,
44.8 kg N/ha for pasture, and 339 kg N/ha for soybean. While the
default value for potato closely matched the expected N content,
significant discrepancies were observed for red clover, soybean, and
barley compared to reference plant N uptake values. Based on
reference values (Azimi et al., 2022; Liang et al., 2019), the N
accumulation estimates for cereal, red clover, pasture, and
soybean were adjusted to 87.2, 201, 40, and 230 kg N/ha,
respectively, while the value for potato remained unchanged. The
default parameter for red clover resulted in a substantial
overestimation of N accumulation, approximately 400% higher
than the expected value. Similarly, the simulated N accumulation
for soybeans exceeded the reference value (224 kg N/ha) by 51%. For
barley, the model overpredicted N accumulation by 26% relative to
the reference value of 87.5 kg N/ha. Note that N accumulation in the
main crops varied by field and year due to differences in weather,
management practices, and pressures from diseases, pests, and
weeds. However, expected values were used in the model for
simplification.

The default parameters yielded an annual plant N accumulation
of 3,070 Mg N/yr. in the watershed. After adjusting the parameters,
the annual plant N accumulation in the watershed decreased by 46%,
to 1,642 Mg N/yr. The use of the default model parameters
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substantially overestimated plant N accumulation by 87%. This
overestimation can translate into an unrealistic overabundance of
N input into the system along with crop residues recycled back into
the soil, leading to unrealistic N leaching and loading estimates from
plant residues. Various compensatory factors for excessive N input
(e.g., excessive denitrification, decreasing automated fertilization
operation, and ignoring legume N fixation) may cancel out the
overestimation effect, creating a “good” model fit. However, these
compensatory effects would inevitably lead to a misrepresentation of
N cycling in the watershed, which could increase the risk of
developing unreliable management strategies for reducing nitrate
loading. This highlights the often-overlooked importance of
constraining plant N uptake parameters using local field
measurements.

3.2.2 Goodness-of-fit of SWAT modeling
Observed and simulated stream discharge and nitrate loading

are shown in Figures 3, 4. The indicators of model performance are
summarized in Table 2. During the calibration period, the model-
predicted streamflow performance measured by NS, PBIAS, and R2

values was 0.6%, 17.4%, and 0.65, respectively. Similar results were
observed during the validation period, with NS, PBIAS, and R2

values of 0.59%, 11%, and 0.61. For baseflow, the model showed
a lower NS value of 0.43 during calibration, but PBIAS and R2 values

were 8.6% and 0.6, respectively, indicating relatively accurate
baseflow estimation. Baseflow estimation performance improved
during the validation period, with NS, PBIAS, and R2 of
0.62%, −5.6%, and 0.68, respectively, which is comparable to the
accuracy of surface flow estimation. Over the calibration period, the
model accurately predicted nitrate loadings with NS, PBIAS, and R2

of 0.71%, 6.5%, and 0.7, respectively. Similar measures were
obtained during the validation period, with NS, PBIAS, and R2

being 0.67%, −5.5%, and 0.68, respectively. Moriasi et al. (2007)
suggested that a model is considered to have satisfactory
performance if the monthly R2 value is greater than 0.50, and the
PBIAS is within the range of ±25%. However, when a model is
calibrated using daily time steps, its performance may be lower than
that of a monthly time step model (White and Chaubey, 2005).
Wang et al. (2016) proposed that a model calibrated at a daily time
step should have R2 and NS values higher than 0.30 to be considered
acceptable.

The lower NS value for predicted baseflow during calibration
can be attributed to its smaller weight assigned in the objective
function during model calibration compared to streamflow and total
nitrate loading. However, small PBIAS values for baseflow
estimation indicated that the model did not overestimate or
underestimate streamflow during dry periods when baseflow was
the sole nutrient delivery path. The inclusion of baseflow in model

FIGURE 2
Land use in the Dunk River Watershed from 2011 to 2020, based on annual national crop cover inventory and land use reclassification analysis.

TABLE 1 Plant parameters for the main crops planted in rotation with potatoes.

Crop Parameter BIO_E CNYLD PLTNFR_1 PLTNFR_2 PLTNFR_3

Red clover adjusted 8 0.025 0.025 0.025 0.025

default 25 0.065 0.065 0.028 0.024

Barley adjusted 15 0.021 0.059 0.0226 0.013

default 35 0.021 0.059 0.0226 0.013

Soybean adjusted 15 0.060 0.030 0.03 0.030

default 25 0.065 0.524 0.265 0.258
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calibration also prevented the model from compensating for any
nitrate load underestimations through overestimating nitrate
supply. Similar changes in PBIAS from the calibration to the
validation period for both baseflow and nitrate loading may
reflect the correlation between baseflow and nitrate load during
dry periods. Overall, the SWAT model successfully predicted daily
streamflow, nitrate loading, and baseflow based on the criteria
outlined by Moriasi et al. (2007). The measurements of nitrate
concentration during the NGS were limited, and increasing
sampling points in the NGS could potentially enhance SWAT
calibration.

FIGURE 3
Comparison of observed and simulated daily streamflow in the Dunk River.

FIGURE 4
Comparison of observed and simulated daily nitrate loadings in the Dunk River.

TABLE 2 Goodness-of-fit of SWAT modeling.

Period R2 NS PBIAS (%)

Streamflow calibration 0.65 0.60 17.4

validation 0.61 0.59 11.0

Baseflow calibration 0.56 0.43 8.6

validation 0.68 0.62 −5.6

N loading calibration 0.71 0.70 6.5

validation 0.68 0.67 −5.5
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3.3 Land use-based nitrate loading rates

On an annual basis, average nitrate loading rates from potato,
cereal, red clover, pasture, soybean, corn, and general agricultural
lands were calculated to be 46.8, 30.7, 19.3, 3.4, 20.9, 32.2, and
21.4 kg N/ha, respectively (Table 3). Generally, agricultural lands
had higher nitrate loading rates than forested land or wetlands.
Urban land also had a high nitrate loading rate likely as a result of
onsite sewage disposal. The variation in nitrate loading among
different land uses underscores the importance of incorporating
diverse land uses and preserving natural lands to maintain the
ecological sustainability of agricultural watersheds. The GS nitrate
loading rates of potato, cereal, and red clover lands were predicted to
be 15.5, 15.9, and 6.4 kg N/ha, respectively, compared to 31.3, 14.8,
and 12.9 kg N/ha during the NGS. The NGS nitrate loading rates of
potato and red clover lands were 102% and 101% higher than the GS
values (Table 3). The NGS nitrate loading rate from each land use
was generally higher than the GS nitrate loading rate.

3.4 Watershed nitrate loading

Total nitrate loading into the Dunk River above the tidal point,
which was defined as the sum of the nitrate loading from each HRU,
was 316 Mg N/yr., equivalent to a global nitrate loading rate of
22 kg N/ha (Figures 5, 6). This rate is similar to the rate of 23 kg N/ha
calculated using an integrated nitrate loading model (Jiang et al.,
2015). The limitation of the integrated model is that it could not
predict temporospatial variations of nitrate loading across the
watershed as SWAT does. As the dominant crop, covering 25.3%
of the watershed, potato land contributed 169.7 Mg N/yr. of nitrate
loading, accounting for 53.7% of the total nitrate loading (Figure 5).
The other major crops, including cereals, red clover, pasture, and
soybean, contributed 77.3, 36.8, 10.6, and 5.9 Mg N/yr., respectively.
Cereal land ranked as the second-highest contributor, accounting
for 24.5%, followed by red clover land, contributing 11.6% of total

nitrate loading. Other land uses collectively generated only 4.9%
(i.e., 15.7 Mg N/yr.) nitrate loading. Nitrate loading from the onsite
septic systems was estimated to be 8.1 MgN/yr. (0.57 kg N/ha) in the
watershed (Jiang et al., 2015). The nitrate loading from other land
uses was assumed to include the nitrate loading from the septic
systems. Although the PBC rotation land only occupied 56% of the
watershed area, it contributed about 90% of the nitrate loading
(Figure 5). The results emphasize the importance of improving N
use efficiency of potato rotation production for mitigating nitrate
loading in the Dunk River Watershed.

These results agree with the findings of Jiang et al. (2015), who
estimated that 75%–98% of nitrate loading in receiving estuaries
originated from potato-rotated lands in intensively farmed
watersheds in PEI. This included potato land, the red clover, and
cereal lands, which were in rotation with potatoes. These results also
align with the widely accepted notion that agricultural land is the
primary contributor to nitrate pollution in PEI’s agricultural
watersheds (Grizard et al., 2020; Jiang and Somers, 2009; Jiang
et al., 2015; Liang et al., 2019). The fact that agricultural land has the
most profound impact on water quality is consistent with
Kersebaum et al. (2003) who indicated that agriculture is
estimated to be responsible for 55% of non-point source
pollution in the European Union. These findings support earlier
studies by Haidary et al. (2013), revealing a significant negative
correlation between water pollution and forest land coverage. Baker
(1992) highlighted that undisturbed forests have a relatively minor
impact on water quality compared to other land uses.

Surface runoff (SW), lateral flow (LF), and groundwater
discharge (GW) paths delivered 0.03%, 1.8%, and 98.2% of the
total nitrate loading, respectively, in the Dunk River Watershed
(Figure 5), indicating that groundwater is the primary flow path of
nitrate loading delivery. The results can be attributed to several
factors. Firstly, nitrate loading is proportional to streamflow, and
over 66% of annual streamflow and 100% of GS streamflow in PEI is
derived from groundwater discharge (Figures 3, 4; Jiang et al., 2015).
Secondly, fertilizer is commonly banded in the soil in PEI, reducing

TABLE 3 Land use-based nitrate loading rates in the Dunk River Watershed (averages of 2011–2020).

Land use GS nitrate loading rate (kg N/
ha/yr.)

NGS nitrate loading rate (kg N/
ha/yr.)

Annual nitrate loading rate (kg N/
ha/yr.)

SW LF GW Total SW LF GW Total SW LF GW Total

Potato 0.007 0.684 14.8 15.5 0.001 0.154 31.2 31.3 0.008 0.838 46.0 46.8

Cereal 0.003 0.232 15.6 15.9 0.001 0.104 14.7 14.8 0.005 0.336 30.4 30.7

Red clover 0.001 0.058 6.3 6.4 0.004 0.364 12.6 12.9 0.006 0.421 18.9 19.3

Pasture 0.003 0.059 1.5 1.5 0.001 0.058 1.8 1.8 0.004 0.117 3.2 3.4

Soybean 0.000 0.052 10.0 10.0 0.015 0.336 10.5 10.8 0.015 0.389 20.5 20.9

Corn 0.009 0.561 15.8 16.4 0.007 0.162 15.7 15.8 0.016 0.723 31.5 32.2

G. Ag 0.026 0.427 8.5 9.0 0.010 0.478 11.9 12.4 0.037 0.904 20.4 21.4

Forestry 0.004 0.031 1.2 1.2 0.002 0.070 1.6 1.7 0.006 0.101 2.8 2.9

Wetland 0.020 0.013 1.0 1.0 0.006 0.030 1.0 1.1 0.027 0.042 2.0 2.1

Urban 0.035 0.269 21.7 22.0 0.037 0.353 17.2 17.6 0.072 0.623 38.9 39.6

Notes: SW, LF, and GW, refer to surface water, lateral flow, and groundwater, respectively; GS and NGS refer to growing season and non-growing season, respectively.
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the risk of fertilizer being washed away by surface runoff (Jiang et al.,
2015). When fertilizer is broadcast, it is normally applied when soils
are not saturated. In this case, there is sufficient infiltrating water to
carry the bulk of the nitrate to a depth where it is not vulnerable to
surface runoff before the soils are saturated and runoff occurs,
resulting in low nitrate levels in surface runoff (Baker, 2001).
Thirdly, nitrate losses from manure runoff were negligible
because manure applications were limited (Jiang et al., 2015).
The finding about surface runoff contributing to low nitrate
loadings aligns with field observations from former studies in PEI
(Dunn et al., 2011; Jiang et al., 2015; Pavlovskii et al., 2023).
Additionally, local field experiments have consistently
demonstrated that nitrate leaching is the primary pathway of N
losses from potato production systems (Jiang et al., 2019; 2022).
Groundwater is the primary flow path of nitrate loading to surface
water worldwide (Bachman et al., 1998; Schilling and Zhang, 2004;
Steiness et al., 2021; Wherry et al., 2021).

Nitrate loadings in the main crops (potatoes, cereals, and red
clovers) exhibited seasonal variations throughout the study period
(Figure 7). The GS and NGS variation coefficients for nitrate
loadings in these three primary croplands were 0.46, 0.41, and
0.5 for GS, and 0.26, 0.29, and 0.61 for NGS, respectively.
However, neither GS nor NGS nitrate loadings demonstrated a
significant long-term trend (p > 0.2). On average, nitrate loadings
fluctuated seasonally, with 39% of the annual nitrate loading
occurring during the GS and 61% during the NGS (Figure 5).
Because the magnitude of nitrate loading is primarily governed
by streamflow rate, NGS nitrate loading being higher than GS nitrate
loading can be explained by NGS streamflow rate being higher than
GS streamflow rate (Figure 3). On an annual basis, nitrate loadings
varied from the highest of 431 Mg N in 2019 to the lowest of
197 Mg N in 2013 at a variation coefficient of 24.8%. The seasonal
and yearly fluctuations were mainly driven by stream discharge and
potato production area variations, with nitrate loading increasing

FIGURE 5
Average nitrate loadings from 2011 to 2020 in the Dunk River Watershed. (SW, LF, and GW represent surface water, lateral flow, and groundwater
paths, respectively).

FIGURE 6
Comparison of annual nitrate loadings under different crop rotation scenarios in the Dunk River Watershed (PBC refers to potato production
following the potato–barley–red clover rotation; PBS refers to potato production following the potato–barley–soybean rotation).
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with higher stream discharge and potato production area (Figures
2–4). The annual potato production area explained 51% of the
variation in nitrate loading (p = 0.02). The significant impact of
annual land use changes underscores the necessity of accounting for
temporal variations in land use when modeling nitrate loading
dynamics. The relative rapid response of nitrate loading to land
use change implies that most nitrate loadings were delivered via
shallow groundwater in the fractured bedrock aquifer, which has a
relatively short residence time (Jiang and Somers, 2009). The yearly
nitrate loadings from 2011 to 2020 as shown in Figure 6 did not
demonstrate a significant long-term temporal trend (p = 0.6). The
absence of a long-term trend was attributed to the lack of systematic
changes in key influential factors, such as land use and hydrology
(Figures 2, 3), throughout the study period.

3.5 Nitrate loading changes from
substituting red clover with soybean

Substituting red clover with soybean in the PBC rotation across
the watershed significantly reduced nitrate loading by 16.8% in the
Dunk River Watershed from 316 Mg N/yr. (i.e., 22 kg N/ha) to
263MgN/yr. (i.e., 18.4 kg N/ha) (paired t-test p < 0.0001) (Figure 6).
This reduction alone contributed to over 50% of the total estuarine N
loading reduction target of 30% set by the Province (Bugden et al.,
2014). This reduction in nitrate loading was caused by nitrate
loading reduction from the potato, cereal, and red clover lands
from 169.7, 77.3, and 36.8 Mg N/yr. to 141.4, 70.5, and 0 Mg N/yr.,
respectively, increase in nitrate loading from the soybean land from
5.9 to 26.5 kg N/yr., and minor changes in nitrate loading from the
other land uses. Because cereal, red clover, and soybean were planted
in rotation with potatoes, the cereal, red clover, and soybean residues
were recycled into the soil. The recycled crop residues were
mineralized and then released nitrate, which could be transported
to groundwater, used by the following crops, or denitrified. These
subsurface processes can have annual effects on nitrate loading,
contributing to nitrate loading changes not only in red clover and

soybean lands but also in the potato and cereal lands. After SWAT
calibration and validation, the red clover and soybean had annual N
fixation rates of 134.5 kg N/ha and 193.2 kg N/ha, and similar plant
N uptake of 229 kg N/ha and 201 kg N/ha, respectively. However,
most of the soybean’s N is harvested and removed from the field as
soybean grains, while the red clover is commonly plowed down as
green manure, being left in the soil. The lower level of N in the
recycled soybean residues created less nitrate loading on a field and
watershed scale. Although SWAT adopted simplified groundwater
mass transport equations instead of classic advection-dispersion
equations (Arnold and Fohrer, 2005), the simulations of changes in
nitrate loading from replacing red clover with soybean respected the
complicated pathways and subsurface processes to some extent.

Potato growers in PEI commonly followed the provincial
government’s recommendation of applying 185 kg N/ha to
processing potatoes, with deductions of 17 kg N/ha for N credits
from plowed-down red clover (where applicable) and an additional
17 kg N/ha for N credits from soil organic matter (PEI government,
2014; Jiang et al., 2024). However, several local studies (Jiang et al.,
2019; 2022; Liang et al., 2019; Azimi et al., 2022; Whittaker et al.,
2023) observed that N accumulation in red clover ranged from
121 to 266 kg N/ha. Because most of this N is expected to be released
in the following potato-growing season (Wyngaarden et al., 2015;
Masunga et al., 2016), adhering to the provincial recommendation of
17 kg N/ha would often result in excessive N application,
significantly increasing the risk excessive of nitrate leaching and
subsequent nitrate loading. The simulated changes in nitrate loading
were compatible with these field observations. These findings
highlight the need to adjust N inputs for potatoes by adequately
accounting for N contributions from red clover, which is crucial for
mitigating nitrate loading in the Dunk River Watershed.

4 Conclusion

The SWAT model estimated an average annual nitrate loading
of 316 Mg N from 2011 to 2020 in the Dunk River Watershed,

FIGURE 7
Seasonal nitrate loadings from the main crops in the Dunk River Watershed. (GS and NGS stand for growing season and non-growing season,
respectively)
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corresponding to a loading rate of 22 kg N/ha. The PBC rotation,
covering 56% of the watershed, contributed 90% of the total nitrate
loading. Seasonal variations in nitrate loading were evident, with
39% occurring during the growing season and 61% during the non-
growing season. Annual nitrate loading fluctuated between
197 Mg N in 2013 and 431 Mg N in 2019, with a coefficient of
variation of 24.8%, but did not demonstrate a significant long-term
temporal trend. These annual fluctuations correlated with stream
discharge and potato production area, as higher values of both led to
increased nitrate loading. Groundwater discharge accounted for
approximately 98% of nitrate loading, highlighting the critical
role of groundwater in delivering nitrate to the river.

Red clover was estimated to accumulate 201 kg N/ha annually,
comparable to the total N demand of potatoes in the region,
contributing significantly to the PBC rotation. Substituting red
clover in the PBC rotation with soybean across the watershed
significantly reduced nitrate loading by 16.7% while introducing
soybean as a cash crop to increase farm profitability. This
reduction in nitrate loading was mainly affected by decreases in
potato (169.7–141.4 Mg N/yr.), cereal (77.3–70.5 Mg N/yr.), and
red clover lands (36.8–0 Mg N/yr.), while nitrate loading in soybean
land increased from 5.9 to 26.5 kg N/yr. These findings emphasize the
importance of adequately accounting for N credits from red clover in
the production system or substituting it with a crop that recycles less
N into the production system for sustainable potato production in the
watershed. These findings also underscore the importance of properly
modeling leguminous forages on nitrate loading estimations.
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